Electronic transport properties of electron- and hole-doped semiconductingC1bHeusler compounds:NiTi1−xMxSn(M=Sc,V)
نویسندگان
چکیده
منابع مشابه
Electronic transport properties of electron- and hole-doped semiconducting C1b Heusler compounds: NiTi1−xMxSn (M=Sc, V)
The substitutional series of Heusler compounds NiTi1−xMxSn where M =Sc,V and 0 x 0.2 were synthesized and investigated with respect to their electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The electronic structure and transport properties were calculated by all-electron ab initio methods and...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولModeling Electron and Hole Transport in Fluoroarene-Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties
p-Conjugated molecular, oligomeric, and polymeric materials are of immense interest as alternatives to traditional inorganic materials for many low-cost organic-based electronics applications–including thin-film transistors (OTFTs), light-emitting diodes (OLEDs), and photovoltaic cells –owing to device processing ease, mechanical flexibility, and a large synthetic palette from which properties ...
متن کاملFirst principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes
Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...
متن کاملFirst principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes
Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2010
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.82.085108